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Abstract—Learning from rewards generated by a human
trainer observing an agent in action has proven to be a powerful
method for non-experts in autonomous agents to teach such
agents to perform challenging tasks. Since the efficacy of this
approach depends critically on the reward the trainer provides,
we consider how the interaction between the trainer and the
agent should be designed so as to increase the efficiency of
the training process. This paper investigates the influence of
the agent’s socio-competitive feedback on the human trainer’s
training behavior and the agent’s learning. The results of our
user study with 85 subjects suggest that the agent’s socio-
competitive feedback substantially increases the engagement of
the participants in the game task and improves the agents’
performance, even though the participants do not directly play
the game but instead train the agent to do so. Moreover, making
this feedback active further induces more subjects to train the
agents longer but does not further improve agent performance.
Our analysis suggests that this may be because some trainers
train a more complex behavior in the agent that is appropriate
for a different performance metric that is sometimes associated
with the target task.

I. INTRODUCTION

Autonomous agents have the potential to play a transfor-
mative role in many aspects of society in the near future.
However, to realize this potential, such agents need to be
able to efficiently learn how to perform challenging tasks
from humans who, although experts in the tasks they are
teaching, may have little expertise in autonomous agents or
computer programming. Therefore, there is a great need for
new methods that facilitate the interaction between humans
and agents through which such learning occurs.

The feedback that the human provides during such inter-
action can take many forms, e.g., reward and punishment
[1], [2], [3], advice [4], guidance [5], or critiques [6]. Within
them, learning from rewards generated by a human trainer
observing the agent in action has proven to be a powerful
method for human trainers who are not experts in au-
tonomous agents to teach such agents to perform challenging
tasks. However, how to make an agent learn efficiently from
these kinds of human rewards is still under-addressed. Since
the efficacy of this approach depends critically on the reward
the trainer provides, we consider how the interaction between
the trainer and the agent should be designed so as to increase
the efficiency of this learning process.

In earlier research, we showed that the way that the agent

interacts with the human trainer can greatly affect the trainer’s
engagement and agent’s learning. In particular, we showed
that if an agent keeps the trainer informed about the agent’s
past and current performance, the trainer will provide more
feedback and the agent will ultimately perform better [7].
Hence, this result shows that the interaction between the
agent and the trainer should ideally be bi-directional: not
only should the trainer give the agent the feedback it needs for
learning, the agent should explicitly give the trainer feedback
on how well that learning is going.

In this paper, we seek to build on this work by investigating
how to improve the sophistication and efficacy of such
a bi-directional interface. In particular, we propose a new
Socio-competitive TAMER interface, in which the trainer is
embedded in an environment that makes her aware of other
trainers and their respective agents. To this end, we developed
a new Facebook app that implements such a social interface.
In addition to receiving feedback about how her agent is
performing, the trainer now also sees a leaderboard that
compares her agent’s performance to that of her Facebook
friends as well as all others using the Facebook app. We
hypothesize that putting the trainers in an environment in
which they compete with each other can further motivate
them to provide more and better feedback to their agents.

In addition, we propose a second extension in which the
agent actively provides feedback to the trainer. While both the
interface in [7] and the social extension mentioned above are
bi-directional, the agent’s role is passive: it merely displays
feedback for the trainer, which the trainer can choose to look
at or ignore. To address this limitation, we developed an ex-
tension to the Facebook app that uses Facebook notifications,
i.e., messages sent to Facebook users while they are not using
the app, that update the trainers on their performance relative
to other trainers. We hypothesize that actively providing the
trainer with feedback in this way will motivate trainers to
return more often to the training process, resulting in more
feedback for the agent and better ultimate performance.

To test these hypotheses, we conducted an experiment with
85 subjects applying our Socio-competitive TAMER interface
to the game of Tetris. The results of our user study with 85
subjects suggest that the agent’s socio-competitive feedback
substantially increases the engagement of the participants in
the game task and improves the agents’ performance, even



though the participants do not directly play the game but in-
stead train the agent to do so. Moreover, making this feedback
active further induces more subjects to train the agents longer
but does not further improve agent performance. A deeper
analysis suggests that some of these trainers were training
more complex agent behavior by optimizing on their own
performance metric.

The rest of this paper begins with a review of related work
in Section II and provides background on TAMER in Section
III. Section IV introduces the proposed Socio-competitive
TAMER interface and Section V presents the experimental
conditions. Section VI describes the experimental setup, and
Section VII reports and discusses the results. Finally, Section
VIII concludes and discusses future work.

II. RELATED WORK

In this section, we discuss related work in learning from
human rewards, social networks, and gamification.

A. Learning from Human Rewards

An agent can learn from human feedback about the agent’s
behavior. In this learning scenario, feedback can be restricted
to express various intensities of approval and disapproval;
such feedback is mapped to numeric “reward” that the agent
uses to revise its behavior [2], [3], [8], [1], [9]. Compared
to learning from demonstration, learning from human reward
requires only a simple task-independent interface and may
require less expertise and place less cognitive load on the
trainer [10].

The TAMER framework [3] allows an agent to learn
from human reward signals instead of environmental rewards.
Using TAMER as a foundation, Knox et al. [11] examine how
human trainers respond to changes in their perception of the
agent and to certain changes in the agent’s behavior, while
Li et al. [7] investigate how informative feedback from the
agent affects trainers’ behaviors. Knox et al. find that the
agent can induce the human trainer to give more feedback
but with lower performance when the quality of the agent’s
behavior is deliberately reduced whenever the rate of human
feedback decreases. Li et al. show that more and higher
quality feedback is elicited from the trainers when the agent’s
past and present performance is displayed to the trainer.

The approach of Knox et al. investigates how an agent’s
task-focused behavior affects a trainer’s training behavior.
However, the approach of Li et al. suggests that the agent
should also provide information about its learning process to
the trainer. Ultimately, we believe that it will be helpful for
facilitating the interaction between the trainer and the agent
if the agent provides information (such as facial expressions,
body language, and gaze behavior) to indicate something
about its learning state and solicit feedback from a human
[12], [13], [14]. However, as an early step towards this
goal, we concentrate in this work on analyzing how sharing
socially derived competitive information can influence the
trainer’s behavior.

B. Social Networks

Research on Online Social Networks (OSNs) emanates
from a wide variety of disciplines and involves research
such as descriptive analysis of users, motivations for using
Facebook, identity presentation, the role of Facebook in
social interactions, and privacy and information disclosure
[15]. Some researchers use OSNs as a tool for recruiting
subjects and testing hypotheses. Many OSNs such as Face-
book and MySpace have opened themselves to developers,
enabling them to create applications that leverage their users’
social graphs. For example, Nazir et al. [16] created three
popular applications with Facebook Developer, a platform
for developers to build social apps on Facebook. These apps
had over eight million users, providing an enormous data set
for research. Through their social game Magpies, also on
Facebook, Kirman et al. [17] found that the additional socio-
contextual data such as social network analysis (SNA) infor-
mation can increase the frequency of social activity between
players engaged in the game but does little to increase the
growth of the player-base. Similar to this paper, Rafelsberger
and Scharl [18] propose an application framework to develop
interactive games with a purpose on top of social networking
platforms, leveraging the wisdom of the crowd by engaging
users in online games to complete tasks that are trivial for
humans but difficult for computers. In this paper, we leverage
the social aspects of OSNs both to recruit human trainers and
to improve the performance of the agents they train.

C. Gamification

Gamification is defined as the use of game-design elements
(such as a score or leaderboard) in non-game contexts [19].
Recently researchers and practitioners in the field of online
marketing, digital marketing and interaction design have
begun to apply gamification to drive user engagement in non-
game application areas including productivity, finance, health,
education and sustainability [20], [21].

For instance, Dominguez et al. [22] used gamification
as a tool to increase student engagement by building a
gamification plugin for an e-learning platform. They demon-
strated that students who completed the gamified experience
got better scores in practical assignments (such as how to
complete different tasks using a given application, e.g. word,
spreadsheet), but performed poorly on written assignments
and participated less in class activities.

Inspired by these works, in this paper, we incorporate
gamification into agent training by embedding the game in
an OSN with competitive elements, aiming to increase the
amount of time spent and feedback given by a trainer to
further improve agent performance.

III. BACKGROUND

This section briefly introduces the TAMER framework and
the Tetris platform used in our experiment.



A. TAMER Framework

An agent implemented according to the TAMER frame-
work learns from real-time evaluations of its behavior, pro-
vided by a human trainer. From these evaluations, which we
refer to as “reward”, the TAMER agent creates a predictive
model of future human reward and chooses actions it predicts
will elicit the greatest human reward. Unlike in traditional
reinforcement learning, a reward function is not predefined.

A TAMER agent strives to maximize the reward caused
by its immediate action, which also contrasts with traditional
reinforcement learning, in which the agent seeks the largest
discounted sum of future rewards. The intuition for why
an agent can learn to perform tasks using such a myopic
valuation of reward is that human feedback can generally
be delivered with small delay—the time it takes for the
trainer to assess the agent’s behavior and deliver feedback—
and the evaluation that creates a trainer’s reward signal
carries an assessment of the behavior itself, with a model
of its long-term consequences in mind. Until recently [23],
general myopia was a feature of all algorithms involving
learning from human feedback and has received empirical
support [10]. Built to solve a variant of a Markov decision
process, (i.e., a specification of a sequential decision-making
problem commonly addressed through reinforcement learning
[24]) in which there is no reward function encoded before
learning, the TAMER agent learns a function Ĥ(s, a) that
approximates the expectation of experienced human reward,
H : S × A → <. Given a state s, the agent myopically
chooses the action with the largest estimated expected reward,
argmaxa Ĥ(s, a). The trainer observes the agent’s behavior
and can give reward corresponding to its quality.

The TAMER agent treats each observed reward signal
as a label for the previous (s, a), which is then used as a
supervised learning sample to update the estimate of Ĥ(s, a).
In this paper, the update is performed by incremental gradient
descent; i.e., the weights of the function approximator spec-
ifying Ĥ(s, a) are updated to reduce the error |r− Ĥ(s, a)|,
where r is the sum of reward instances observed shortly after
taking action a in state s.

In TAMER, feedback is given via keyboard input and
attributed to the agent’s most recent action. Each press of one
of the feedback buttons registers as a scalar reward signal
(either -1 or +1). This signal can also be strengthened by
pressing the button multiple times (upto ±4). The TAMER
learning algorithm repeatedly takes an action, senses reward,
and updates Ĥ .

B. Tetris Platform

Tetris is a fun and popular game that is familiar to most
people, making it an excellent platform for investigating how
humans and agents interact during agent learning. We use an
adaptation of the RL-Library implementation of Tetris.1

Although Tetris has simple rules, it is a challenging prob-
lem for agent learning because the number of states required

1library.rl-community.org/wiki/Tetris (Java)

Fig. 1: Intelligent Tetris, our Facebook app for training.

to represent all possible configurations of the Tetris board is
extremely large [25]. In the TAMER framework, the agent
uses 46 state features—including the 10 column heights,
9 differences in consecutive column heights, the maximum
column height, the number of holes, the sum of well depths,
the maximum well depth, and the 23 squares of the previously
described 23 features [26]—to represent the state observation.
The input to Ĥ is 46 corresponding state-action features, the
difference between state features before a placement and after
the placement and clearing any resulting solid rows.

Like other implementations of Tetris learning agents (e.g.,
[27], [28], [29]), the TAMER agent chooses from possible
final placements of pieces upon the stack of previously
placed pieces, instead of controlling atomic rotations and
left/right movements. Even with this simplification, playing
Tetris remains a complex and highly stochastic task.

IV. SOCIO-COMPETITIVE TAMER
INTERFACE

Our Socio-competitive TAMER interface was developed
by integrating the original TAMER interface into a Facebook
frame with Facebook Developer. To our knowledge, this
interface is the first to incorporate TAMER into a social-
network setting. The interface eases subject recruitment for
the experiment by leveraging a subject’s social network to
gain more participants. Moreover, the interface enables the
experiment to be integrated into people’s daily lives, and
thereby gather data in a realistic context.

The Socio-competitive TAMER interface facilitates the
development of social apps for numerous different agent
training tasks with TAMER in a social network setting.
For this paper, we developed the Facebook App ‘Intelligent
Tetris’ as a platform for our experiments. The Facebook
user can visit the app via a Facebook page describing the
experiment, or by searching for it in the App Center. By
clicking on the “Play game” button, the user can enter into
the app page. To start training, the user must agree with the
permissions, terms and conditions to authenticate the app. As
shown in Figure 1, the training page contains a game board
on the left side and a tip box on the right that shows training
instructions.



TABLE I: Summary of the four conditions. As described in Section V,
the non-social feature is a display of the agent’s performance history, the
passive social feature is the leaderboard, and the active social feature is the
notifications of changes in a user’s leaderboard rank. Note that all conditions
allowed people to invite their friends to install the app, thereby becoming
subjects.

Condition
Non-social Social behavior

behavior Passive Active

Control

Performance X

Passive Social X X

Active Social X X X

The key advantage of the Socio-competitive TAMER in-
terface is that, as with other experimental uses of Facebook
[16], [17], [18], many users can be recruited in a short
time, making research in this area more feasible. In our
experiment, 100 subjects consented to install the app within
the first three days of this study. By contrast, our earlier
experiment [7] obtained only 51 subjects using a more
aggressive recruitment effort that included manually sending
emails to potential subjects, putting up flyers and posters, and
sending reminder emails.

V. EXPERIMENTAL CONDITIONS

In this section, we present the four conditions used in
our experiment. The control and performance conditions are
replicated from our earlier work [7]. The passive and active
social conditions are the novel conditions we propose in this
paper. The conditions and their corresponding functionalities
are summarized in Table I.

Fig. 2: The performance interface.

A. Control Condition

The interface for the control condition is the original
TAMER interface presented in [3] but placed within the
Socio-competitive TAMER interface, as described in Section
IV. The trainer is not given any feedback except for the
state and action of the agent, which are visible from the
Tetris game board. Participants can give positive and negative
feedback to the previous action of the agent. They can
increase the strength of this feedback by pressing the button
more times (up to a range of ±4).

Fig. 3: The leaderboards. (The profile images and names are
obscured for anonymization reasons.)

B. Performance Condition

The performance condition is implemented by integrating
the performance-informative interface of [7] into the Socio-
competitive TAMER interface. Here, the agent’s performance
over past and current games is shown in a performance
window during the training process. As shown in Figure 2,
each bar in the performance window indicates the agent’s
performance in one game chronologically from left to right.
The agent’s performance is measured by the number of lines
cleared. During training, the pink bar represents the number
of lines cleared so far for the current game, while the dark
blue bars represent the performance of past games. When a
game ends, the corresponding bar becomes dark blue and any
new lines cleared in the new game are visualized by a pink
bar to its right. When the performance window is full, the
window is cleared and new bars appear from the left.

Our earlier work [7] found that this performance-
informative interface, in comparison to the control interface,
can increase the duration of training, the amount of feedback
from the trainer, and the agent’s performance.

C. Passive Social Condition

In the performance condition, the agent shows only its own
performance to the human trainer. We hypothesize that people
will be further motivated to improve the agent’s performance
if they are put in a socio-competitive situation where they can
compare the performance of their agents with that of others.
Therefore, in the passive social condition, we allow the agent
to indicate the rank and score of the trainer’s Facebook
friends, as well as those of all trainers. This condition is
called passive because the agent does not actively seek the
attention of the trainer. This information is also displayed
only within game play, unlike the active social condition
discussed below.

To implement this condition, we added a leaderboard on
top of the interface of the performance condition. An example
leaderboard is shown in Figure 3. There are two leaderboards
in the leaderboard frame: ‘Facebook Friends’ and ‘All Users’.
For each trainer, all her friends who registered the app are
listed in the ‘Facebook Friends’ leaderboard and all the
participants who registered the app are listed in the ‘All
Users’ leaderboard. The trainer’s Facebook friends and other
participants in the leaderboard can also be in other conditions.
The first name and profile image of each trainer from her
respective Facebook account is shown in the leaderboards.

When the trainer starts training for the first time, her
agent’s performance is initialized to 0 and ranked in the



Fig. 4: Notification (with names anonymized).

leaderboard. Whenever the trainer finishes a game, the new
game score and rank is updated in the two leaderboards. To
create more movement up and down the leaderboard, only
the latest game score is used. The trainer can check her
score and rank in each leaderboard by moving the cursor over
the corresponding tab. Even when the trainer quits training
without finishing the game, the game is finished for her off-
line and a new game score and rank is updated to both
leaderboards. Therefore, the trainer can keep track of both
the agent’s learning progress and the agent’s performance
relative to that of her friends and all other trainers.

D. Active Social Condition

In the performance and passive social conditions, the per-
formance information is only passively shown by the agent
within game play. Intuitively, as between human teachers
and students, the interaction between the human trainer and
agent should not only be bi-directional, but both the student
and teacher should take active roles. Therefore, in the active
social condition, we allow the agent to notify the human
trainer outside of the socio-competitive TAMER app about its
performance relative to others. We hypothesize that actively
informing the trainer in this way will encourage the trainer to
return to the application and further motivate her to improve
the agent’s performance.

In this condition, in addition to the leaderboards, at the
end of each training session, when the user in this condition
quits training without finishing the last game, the app finishes
the game offline. A notification is sent to the trainer. On
Facebook, app notifications are short free-form messages of
text. They can effectively communicate important events,
invites from friends or actions people need to take. When a
notification is delivered, it highlights the notifications jewel
on Facebook and appears in a drop-down box when clicked.
An app notification is displayed to the right of the cor-
responding app’s icon, interspersed with other notifications
in chronological order, as shown in Figure 4. Note that
this notification is not actively shown in a pop-up display.
The trainer can only see the contents of the notification by
clicking on the highlighted notification jewel.

In this condition, notifications about the agent’s perfor-
mance are sent to the user if the rank of her agent has
increased or decreased relative to others. Likewise, if an-
other agent surpasses, or is just surpassed by the current

trainer’s agent, those corresponding trainers in the active
social condition are also notified of the change in their
agents’ ranks. Note that if an agent jumps several ranks, only
the nearest ranked agent to the new location is considered for
the notification. To ensure that the leaderboards were well-
populated, the ranks of all subjects were used.

More precisely, for the user whose new game score sur-
passes others, a notification saying ‘You have surpassed
in Intelligent Tetris. Your agent score for last game is ,
ranked of all users.’ is sent to the current user; for
the user being surpassed, she receives a notification saying
‘You have been surpassed by in Intelligent Tetris. Your
current game score is , ranked of all users.’, as
shown in Figure 4.

There are many other ways the agent could notify the
trainer, e.g., by posting on the user’s wall or newsfeed.
However, we were concerned these approaches would carry a
higher risk of annoying the trainer. In addition, the resulting
information would be seen by the trainer’s friends or other
trainers who are in other conditions, creating a confounding
factor in our experiment. Therefore, we only use notifications
to implement the active aspect of this condition. To avoid
annoying the trainer, at most three notifications are sent every
24 hours.

VI. EXPERIMENTAL SETUP

To evaluate our interfaces, we conducted an experiment
with our ‘Intelligent Tetris’ Facebook App. 157 participants
were recruited and uniformly distributed into the four condi-
tions. However, eight participants started training but never
gave any feedback and 64 participants registered the app but
did not start training. Therefore, only data from the remaining
85 participants (69 male and 15 female) were analyzed. Of
these, 66 were from Europe, 3 from North America, 3 from
South America, 1 from Asia and 1 from New Zealand, aged
from 17 to 46.2

There were 21 participants in the control condition, 19 in
the performance condition, 20 in the passive social condi-
tion and 25 in the active social condition. The experiment
started on June 18, 2013 and ended on July 18, 2013.
For each trainer, we recorded state observations, actions,
human rewards, lines cleared, timestamp of mouse-overs of
the leaderboard tabs, content and timestamp of notifications,
as well as other user information such as email address,
location, age, gender, etc. There was a FAQ page displaying
the instructions for training and problems that may occur
when registering the app. The user could also visit a separate
Facebook page dedicated to the experiment via a link in
the FAQ page where detailed terms and conditions regarding
consent were provided. Unlike our earlier experiment [7],
the trainers were not given time to practice before training
started.

2Note that not all participants provided demographic information via their
Facebook accounts.



VII. RESULTS AND DISCUSSION

We present and analyze the results of our experiment in
this section. In the results below, the p-value was computed
with the non-parametric Mann-Whitney-Wilcoxon test (one-
tailed). In the box plots, the bottom and top of the box are
the first and third quartiles, and the line inside the box is the
second quartile (the median). The range spanned by the box
is the interquartile range (IQR). The plotted whiskers extend
to the most extreme data value that is not an outlier; data
values are considered outliers (and drawn as plusses) if they
are 1.5 × IQR larger than the third quartile or 1.5 × IQR
smaller than the first quartile.
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Fig. 5: Boxplots across the four conditions of (a) total time
steps trained by subjects and (b) between-subject distribution
of the total number of time steps that were labeled with
feedback. C: control; P: performance; PS: passive social; AS:
active social.

A. Training Time

Figure 5(a) summarizes the total number of time steps
trained for each condition (note the log scale). A time step
equates to the execution of one action by the agent, which
is a metric unaffected by the trainer’s chosen falling speed.
The results show that, in the passive social condition, the
subjects trained significantly longer than in either the control
(3.3 times in median; U = 114.5, z = −2.48, p < 0.01,
r = 0.39) or performance conditions (3.2 times in median;
U = 110.5, z = −2.22, p < 0.02, r = 0.36). Similarly, in the
active social condition, the subjects also trained longer than in
either the control (2.2 times in median; U = 188, z = −1.63,
p = 0.05, r = 0.24) or performance conditions (2.2 times in
median; U = 179, z = −1.37, p = 0.08, r = 0.21). In
addition, in the active social condition, the subjects trained
less in median than in the passive social condition (0.7 times).
However, the active social condition resulted in longer mean
training time than the passive social condition (3.4 times).
Thus, the social conditions positively affected training time,
which is consistent with our hypotheses.

B. Amount of feedback

Figure 5(b) summarizes the distribution of number of time
steps with feedback for all the subjects in the four conditions.
The results show that, in the passive social condition, the
trainers gave more feedback than in either the control (2.9

times in median; U = 152.5, z = −1.49, p = 0.07, r = 0.23)
or performance conditions (3.0 times in median; U = 143.5,
z = −1.29, p = 0.098, r = 0.21). Similarly, in the active
social condition, the trainers also gave more feedback than in
either the control (1.6 times in median; U = 202, z = −1.32,
p = 0.09, r = 0.20) or performance conditions (1.6 times
in median; U = 199, z = −0.90, p = 0.18, r = 0.14).
In addition, in the active social condition the trainers gave
less feedback in median than in the passive social condition
(0.6 times), but the active social condition resulted in more
mean time steps with feedback given than the passive social
condition (1.6 times). Again, consistent with our hypotheses,
the social conditions positively affected the quantity of time
steps with feedback.

We also analyzed the total instances of feedback, where
an instance is a single press of the feedback button and
there can be multiple presses for one time step. In the
passive social condition, the trainers gave more feedback
instances (number of times positive or negative feedback
button was pressed) than in either the control (3.2 times
in median; U = 136.5, z = −1.90, p < 0.05, r = 0.30)
or performance conditions (2.2 times in median; U = 146,
z = −1.22, p = 0.11, r = 0.20). Similarly, in the
active social condition, the trainers also gave more feedback
instances than in either the control (2.0 times in median;
U = 194.5, z = −1.49, p = 0.07, r = 0.22) or performance
conditions (1.4 times in median; U = 198.5, z = −0.91,
p = 0.18, r = 0.14). However, in the active social condition
the trainers gave less feedback in median than in the passive
social condition (0.6 times), but the active social condition
resulted in slightly more mean feedback instances than the
passive social condition (1.1 times).

Overall, our results suggest that the agents’ social per-
formance feedback can influence the trainer to give more
feedback and spend more time on training.

C. Performance

We hypothesized that the trainer’s increased engagement
(i.e., not only more training time, but also motivation to
give more and better feedback) would lead to improved
performance by the agents. To test this, we first examined
how the agents’ performances varied as the trained policy
changed over time. We divided up the training time of each
trainer into intervals. The first six intervals consist of 50 time
steps each, next two of 100 time steps each, and thereafter,
all intervals consist of 200 time steps each.

For each subject, the agent’s policy was saved at the end
of each interval and tested offline for 20 games, since the
states visited for each game can vary a lot. However, some
factors such as the distribution of the trainer’s skill level
across conditions, the domain stochasticity etc., may still
affect the evaluation of agent performance. Nonetheless, we
believe that the large number of participants can compensate
for these variabilities encountered while running studies in
the wild. The performance for each condition was computed
by averaging across the 20 offline games, then across all
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Fig. 6: Mean offline performance.

the subjects in each condition. If the subject’s final training
instances stop sooner than the final interval, the performance
of her agent’s final policy is taken in later intervals. The
longest-trained agents in the control and performance condi-
tions received up to 10 intervals of feedback, whereas for the
passive and active social conditions the longest-trained agents
received 51 and 146 intervals of feedback respectively. Like
the performance measure in [7], in the analysis below we use
the mean value across subjects as the performance for each
condition.

As shown in Figure 6, early performance within the
passive social condition was similar to that within the control
condition, whereas the performance within both the active
social and performance conditions was better. Thereafter,
performance within the passive social condition increases
faster than the other three conditions, and ultimately becomes
higher than that of the other three conditions. The active
social condition, which performs the second best overall,
outperforms the control condition throughout the training
process and outperforms the performance condition from 200
time steps on.

Thus, these results suggest that the social conditions im-
proved the performance of the agent. Surprisingly, however,
and not consistent with our hypothesis, the active social
condition did not significantly outperform the passive social
condition (p = 0.22). From the results in Section VII-A we
see that trainers in the active social condition, trained slightly
less in median (0.7 times) than in the passive social condition
but much longer in mean (3.4 times), indicating that more
trainers come back to further train agents because of the
active social behavior (i.e. receiving notifications) but did
not tend to achieve better agent performance. As a possible
explanation, we considered whether some trainers employed
a strategy of training the agent to clear multiple lines at once,
which is given more points per line in some traditional Tetris
games, but not in our experiment. Since such a strategy is
more complex, it could take longer to train, and its effects
might therefore be greater in the active social condition,
where trainers did the most training.

To investigate this further, we retested the final offline
performance with the score mechanism for the original Tetris
game, hypothesizing that some trainers were employing a
multi-line strategy and that trainers in the active social con-

dition, by persisting longer with this more complex strategy,
would benefit the most from a score mechanism that rewards
clearing multiple lines at once. This score mechanism gives
increasing bonuses (0.5, 4.5, 26) for clearing 2, 3, or 4 lines
respectively. We found that the new offline performance for
the active social condition (719 lines) increased more than
the new offline performance of the passive social condition
(728 lines), when compared to their corresponding bonus-free
performances (583 and 700 lines, respectively).

This difference in training behavior between the two con-
ditions was not expected and further analysis is required to
understand why the trainers in the active social condition
stopped training before their agent performance surpassed
those of the passive social condition. One possible explana-
tion is that the active social trainers stopped training because
their rankings were not improving even with their more
complex training strategy. However, we do not know whether
this multi-line strategy was trained during the first interval
or emerged later on in the training process. We suspect the
reason that the rankings did not improve is the large variance
of agent performance in Tetris, which could frustrate the
trainer when the agent’s online performance is low despite
continued training and a good learned policy.

D. Influence of Social Information
a) Looking at the Leaderboards: To measure the extent

to which social information influenced the trainers, we tried
to measure how often they looked at the leaderboard. Since
we cannot measure this directly, we used the number of
mouseovers as a proxy for this. Our data shows that more
than half of the participants in the passive and active social
conditions moved the cursor over the leaderboard tabs at least
once. In the passive social condition, 11 of 19 trainers moused
over the leaderboard tabs, where 5 of them moused over more
than 10 times and one even checked up to 31 times in five
days. In the active social condition, 17 of 25 trainers moused
over the leaderboard tabs, where 5 of them moused over more
than 10 times and one did this up to 40 times. Using Pearson’s
correlation test, we also observed that for both conditions, the
number of tab mouseovers correlates with the number of time
steps trained (r = 0.60, p ≈ 0.006 and r = 0.89, p ≈ 0 for
passive social and active social conditions respectively) and
the trained agents’ final offline performances (r = 0.72, p ≈
0.0004 and r = 0.67, p ≈ 0.0002 for passive social and
active social conditions respectively).

b) Receiving Notifications: The data shows that 22
trainers received 40 notifications in total in the active so-
cial condition. 6 of the 22 trainers received 9 notifications
saying she had been surpassed by others, and the other
31 notifications informed the trainer she surpassed other
trainers. The notification jewel was clicked 28 times by
11 of the 22 trainers, where 8 of them clicked more than
once. Pearson’s correlation test shows that the number of
notifications the trainer received correlates with the time steps
trained (r = 0.18, p = 0.39) and the number of time steps
with feedback (r = 0.41, p = 0.04).



VIII. CONCLUSION AND FUTURE WORK

By integrating agent training with an online social network
via the Socio-competitive TAMER interface, this paper inves-
tigated the influence of social feedback on human training
and the resulting agent performance. With this interface, we
addressed the challenge of recruiting subjects and inserted
agent training into people’s daily online social lives. The
results of our user study showed that the agent’s social feed-
back can induce the trainer—possibly by inducing between-
trainer competitiveness—to train longer and give more feed-
back. The agent performance was much better when social-
competitive feedback was provided.

We found that adding active social feedback induced more
trainers to train longer (on average, but less in median)
and provide more feedback but did not further improve
agent performance. A deeper analysis of the behaviors of
the trainers is needed to understand why more subjects were
induced by the active social behavior to train longer and give
more feedback while still not surpassing the performance
of agents in the passive social condition. One possible
explanation is that some trainers employed a more complex
multi-line clearing strategy, which had greater effects for the
active social condition, where the most training occurred,
or it could be related to the median training time being
slightly lower. This is tentatively suggested by the substantial
increase in performance of the agents in this condition when
using a scoring system that rewards clearing multiple lines
rather than single line. In contrast, in the passive social
condition, the increase in performance when using the multi-
line score weighting is much less. We suspect that the reason
for not further training the agent to successfully learn a
multi-line clearing strategy can be the huge variance of
agent performance in Tetris. Finally, we believe that our
approach could transfer to other domains and methods for
agent learning from a human, since TAMER succeeds in
many domains including Tetris, Mountain Car, Cart Pole,
Keepaway Soccer, Interactive Robot Navigation etc. [26],
though more investigations are needed to test this hypothesis.

Future work will focus on further investigating how train-
ers’ relationships with each other impact their training. For
example, people with closer relationships may be more
competitive with each other than with strangers. In addition,
we would also like to investigate how multiple trainers can
train a single agent together and whether the social dynamic
between trainers could also positively influence training in
such a scenario.
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riences: Practical implications and outcomes,” Computers & Education,
2013.

[23] W. B. Knox and P. Stone, “Learning non-myopically from human-
generated reward,” in IUI, 2013.

[24] R. Sutton and A. Barto, Reinforcement learning: An introduction.
Cambridge Univ Press, 1998.

[25] E. Demaine, S. Hohenberger, and D. Liben-Nowell, “Tetris is hard,
even to approximate,” Computing and Combinatorics, 2003.

[26] W. Knox, “Learning from human-generated reward,” Ph.D. disserta-
tion, University of Texas at Austin, 2012.

[27] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Athena
Scientific, 1996.

[28] N. Bohm, G. Kokai, and S. Mandl, “Evolving a heuristic function for
the game of Tetris,” Proc. Lernen, Wissensentdeckung und Adaptivitat
LWA, 2004.

[29] I. Szita and A. Lorincz, “Learning Tetris Using the Noisy Cross-
Entropy Method,” Neural Computation, 2006.


