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Human reinforcement: rich but flawed
MDP Reward: sparse but flawless
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» RL algorithm: Sarsa(A) -

— features: a grid of 2D Gaussian RBFs over
state; one grid for each action

— representation of Q: linear model

— initialization of Q: both opt. and pess.
— updates: gradient descent

* 30 runs of 500 episodes
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P(a = argmazo[H(s,a)]) = p. Otherwise original
RL agent’s action selection mechanism s used.

Directly exploit the model
to determine action
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If greedy: action = argmax,H (s, a)
Knox and Stone, K-CAP 2009

Lessons

1. Pessimistic initialization works, optimistic does not

Two predictive models used (from among 19
trainers). .
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* better than shaping rewards (2nd technique)



